Code No.: 17636 S

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (I.T.) VII-Semester Supplementary Examinations, July-2022

Compiler Construction

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

Q. No.	Stem of the question	M	L	CO	PO
1.	Differentiate between analysis part and synthesis part of a compiler.	2	1	1	1
2.	What is the role of lexical analyzer?	2	1	1	1
3.	Define left factoring.	2	1	2	1
4.	Eliminate left recursion from the following grammar. $E \rightarrow E + T \mid T$	2	1	2	1
	$T \rightarrow T * F F$ $F \rightarrow (E) id$				
5.	What is L-attributed definition?	2	1	3	1
6.	List the various forms of three address instructions.	2	1	3	1
7.	What is an Activation record? What are its contents?	2	1	4	1
8.	What is a basic block? Give an example.	2	1	4	1
9.	Differentiate register allocation and register assignment.	2	1	5	1
10.	Define instruction cost. Determine the costs of the following instruction sequences.	2	1	5	1
	LD R ₀ , b				
	ADD R ₀ , c ST a, R ₀				
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Discuss about LEX- Lexical analyzer generator.	4	2	1	2
b)	Write the regular definitions for identifiers and unsigned numbers and also draw the transition diagrams for recognition of identifiers and unsigned numbers.	4	2	1	2
12. a)	Compute FIRST and FOLLOW for the following Grammar: E→E+T T	3	3	2	2
	$T \rightarrow T*F \mid F$ $F \rightarrow (E) \mid id.$				
b)	Construct predictive parsing table for the following grammar and show the parser steps for the input ((a)).	5	3	2	3
	$A \rightarrow (A) \mid a$				

13. a)	Translate the expression $-(a+b)*(c+d)+(a+b+c)$ in to quadruple, and triple structures.	3	3	3	3
b)	The following grammar generates binary numbers with a "decimal" point:	5	3	3	3
	$N \rightarrow L.L$ $L \rightarrow LB \mid B$ $B \rightarrow 0 \mid 1$				
	Design an SDD to compute N.dval, the decimal-number value of an input string. Justify your design with the following example. The translation of string 101.101 should be the decimal number 5.625.				
14. a)	Explain in brief about the following optimization techniques with suitable examples.	3	2	4	2
	i) Common Sub-expression eliminationii) Copy propagationiii) Constant folding				
b)	What is a leader of basic block? Write the algorithm to partition the three-address code into basic blocks. Draw the flow graph for matrix multiplication.	5	4	4	2
15. a)	What are the issues in the design of code generator? Explain.	3	2	5	2
b)	Discuss about the code generation algorithm. Generate three-address code for the following C statement. x = a + b * c.	5	4	5	3
	Convert your three address code into machine code, using the simple code generation algorithm, assuming three registers are available. Show the register and address descriptors after each step.				
16. a)	Explain the role of assembler, compiler, loader and linker in the language processing system with a neat diagram.	3	2	1	1
b)	Construct SLR parsing table for the following grammar and show the actions of the parser for the input string ()()\$. $S \rightarrow S$ (S) $S \rightarrow \epsilon$	5	3	2	3
7.	Answer any <i>two</i> of the following:				
a)	Explain in brief about Type checking and Type Conversion.	4	2	3	2
b)	What is reference counting? Explain how they are used in garbage collection.	4	2	4	2
c)	Explain in brief about peephole optimization techniques.	4	2	5	2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	25%	
ii)	Blooms Taxonomy Level – 2	36.25%	
iii)	Blooms Taxonomy Level – 3 & 4	38.75%	
